FUN FACT #4: sitting in front of an open book only classifies as "studying" if: i) your eyes are open 2) you occasionally glance at it and turn the pages.

Exploring Rational Functions Section 3.4

Objectives:

- Find the Domain of a Rational Function
- Find the zeros of a Rational Function
- Determine the Vertical and Horizontal Asymptotes

Exploring Asymptotes of a Rational Function

Ratios of integers are called rational numbers.

Write an example of a rational number: ____3, -6, 0, 1/2, -.3333333333, 2/7____

Ratios of polynomial functions are called rational functions.

Write an example of a rational function: _	5 <i>x</i> +2	$x^2 + 3x + 4$	
		x-1	

A rational function is a function of the form, $\frac{p(x)}{q(x)}$; where p and q are polynomial functions. The domain consists of all real numbers except those for which the denominator q is 0.

Find the domain:

1.
$$\frac{3x-1}{x^2}(-\infty,0) \cup (0,\infty)$$
 2. $\frac{x^2+2}{x-1}(-\infty,1) \cup (1,\infty)$

3.
$$\frac{x}{(x+1)(x+2)}$$
 $(-\infty, -2) \cup (-2, -1) \cup (-1, \infty)$

Finding Zeros of a Rational Function

To find the zeros of a rational function without graphing, our rational function needs to be in

lowest terms______.

To find the zeros of a rational function, find the zeros of the ___NUMERATOR______.

Find the zeros of the following three rational functions.

4. $\frac{x^2 - x - 2}{x^2 - 1}$	$5.\frac{3x^2}{x^3+x}$	$6. \ \frac{x^2 + x - 6}{x^2 + 5x + 6}$
$\frac{(x-2)(x+1)}{(x+1)(x-1)}$	$\frac{3x^2}{x(x^2+1)}$	$\frac{(x-2)(x+3)}{(x+2)(x+3)}$
Zero At 2	No zero	Zero at 2

Asymptotes p. 212

If the graph of a rational function is approaching a number, but never touches that value, we call this line an **asymptote.**

In figure 42, we see in a and b that the function is approaching a horizontal line (it's pink!). This is a **horizontal asymptote.**

In figure 42, we see in c and d that the function is approaching a vertical line (it's pink as well!). This is called a **vertical asymptote.**

To find the vertical asymptote, a rational function must be in ____LOWEST TERMS______.

The asymptote(s) is/are the zeros of the denominator.

For example: $\frac{2}{x-1} = f(x)$ is rational function and is in lowest terms so the vertical asymptote is a x = 1.

Look over example four on page 213.

Find the vertical asymptotes for the following:

10.
$$f(x) = \frac{2x}{x^2 + x}$$
 11. $f(x) = \frac{x+1}{x^2 + 5x + 4}$ 12. $f(x) = \frac{x^2 + 6x + 9}{x^2 - 8x + 12}$

$$X = -1$$
 $x = -4$ $x = 2, x = 6$

To find the horizontal asymptotes, you should look at the graph on a calculator, and estimate the asymptote. **Find the horizontal asymptote for the following.**

13.
$$\frac{1}{x^2} + 1 = f(x)$$
 14. $\frac{1}{(x+1)^3} - 3 = f(x)$ 15. $\frac{x^2 - 5x + 6}{x^2 - 8x + 15} = f(x)$